Contextual Analysis for Middle Eastern Languages with Hidden Markov Models

نویسنده

  • Kazem Taghva
چکیده

Displaying a document in Middle Eastern languages requires contextual analysis due to different presentational forms for each character of the alphabet. The words of the document will be formed by the joining of the correct positional glyphs representing corresponding presentational forms of the characters. A set of rules defines the joining of the glyphs. As usual, these rules vary from language to language and are subject to interpretation by the software developers. In this paper, we propose a machine learning approach for contextual analysis based on the first order Hidden Markov Model. We will design and build a model for the Farsi language to exhibit this technology. The Farsi model achieves 94% accuracy with the training based on a short list of 89 Farsi vocabularies consisting of 2780 Farsi characters. The experiment can be easily extended to many languages including Arabic, Urdu, and Sindhi. Furthermore, the advantage of this approach is that the same software can be used to perform contextual analysis without coding complex rules for each specific language. Of particular interest is that the languages with fewer speakers can have greater representation on the web, since they are typically ignored by software developers due to lack of financial incentives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

A Combined Approach to Part-of-Speech Tagging Using Features Extraction and Hidden Markov Model

Words are characterized by its features. In an inflectional language, category of a word can be express by its tense, aspect and modality (TAM). Extracting features from an inflected word, one can categorised it with proper morphology. Hence features extraction could be a technique of part-of-speech (POS) tagging for morphologically inflected languages. Again, many words could have same feature...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.01757  شماره 

صفحات  -

تاریخ انتشار 2015